Tamper Resilient Circuits: The Adversary at the Gates
نویسندگان
چکیده
We initiate the investigation of gate-tampering attacks against cryptographic circuits. Our model is motivated by the plausibility of tampering directly with circuit gates and by the increasing use of tamper resilient gates among the known constructions that are shown to be resilient against wiretampering adversaries. We prove that gate-tampering is strictly stronger than wire-tampering. On the one hand, we show that there is a gate-tampering strategy that perfectly simulates any given wiretampering strategy. On the other, we construct families of circuits over which it is impossible for any wire-tampering attacker to simulate a certain gate-tampering attack (that we explicitly construct). We also provide a tamper resilience impossibility result that applies to both gate and wire tampering adversaries and relates the amount of tampering to the depth of the circuit. Finally, we show that defending against gate-tampering attacks is feasible by appropriately abstracting and analyzing the circuit compiler of Ishai et al. [IPSW06] in a manner which may be of independent interest. Specifically, we first introduce a class of compilers that, assuming certain well defined tamper resilience characteristics against a specific class of attackers, can be shown to produce tamper resilient circuits against that same class of attackers. Then, we describe a compiler in this class for which we prove that it possesses the necessary tamper-resilience characteristics against gate-tampering attackers.
منابع مشابه
A new security proof for FMNV continuous non-malleable encoding scheme
A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...
متن کاملSecuring Circuits and Protocols against 1/poly(k) Tampering Rate
In this work we present an efficient compiler that converts any circuitC into one that is resilient to tampering with 1/ poly(k) fraction of the wires, where k is a security parameter independent of the size of the original circuit |C|. Our tampering model is similar to the one proposed by Ishai et al. (Eurocrypt, 2006) where a tampering adversary may tamper with any wire in the circuit (as lon...
متن کاملTamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience
Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algorithms (e.g., smart cards), where an adversary introduces faults with the hope that the tampered device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt’06], we propose a compiler that transforms any circuit into a new circuit with the same functionality, but which is resilient ...
متن کاملResilient Aggregation: Statistical Approaches
In typical sensor network applications, the sensors are left unattended for a long period of time. In addition, due to cost reasons, sensor nodes are usually not tamper resistant. Consequently, sensors can be easily captured and compromised by an adversary. Once compromised, a sensor can send authentique messages to other nodes and to the base station, but those messages may contain arbitrary d...
متن کاملA Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates
The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013